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Abstract33

The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences,34

mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy35

forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also36

known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and37

comparison difficult.38

To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented39

forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such40

as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observa-41

tions, which contains all time-independent information relevant to verification. To verify forecasts, one can use any42

graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast qual-43

ity. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under44

this general framework.45

Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean
square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is
highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score
allows—with appropriate caveats—comparison of forecasts made using different models, across different locations
and time periods.

1All co-authors are listed in alphabetical order. 1



Keywords: Solar forecasting, Measure-oriented forecast verification, Distribution-oriented forecast verification, Skill46

score, Combination of climatology and persistence47

1. Introduction48

The power grids, which transmit and distribute electricity to end users, are being monitored and controlled by sys-49

tem operators at all times to ensure reliable power delivery. Considering that solar and other renewable energy sources50

are inherently variable, and that utility-scale energy storage is not economically viable globally yet, operational ex-51

cellence of the power grids can benefit from accurate solar forecasts.2 Consequently, reliable and well-characterized52

solar forecasting tools and methodologies are becoming essential, and are considered of high value (Martinez-Anido53

et al., 2016; Huang and Thatcher, 2017; Antonanzas et al., 2017; Klingler and Teichtmann, 2017).54

Surface shortwave radiation is unavailable at night and, during daytime, fluctuates as a function of the position of55

the Sun, cloud cover, aerosols, and other weather variables. Solar forecasts are used by utilities for various reasons:56

switching energy sources, planning backup generators, calculating reserves, and energy trading. The time horizons57

covered by modern solar forecasting typically range from a few seconds to a few days. Over the last decade, the58

literature on this topic has bloomed. A wide spectrum of methods, either physics-based (e.g., sky or shadow imagery,59

remote sensing, or numerical weather prediction), data-driven (e.g., time series, spatio-temporal statistics, or machine60

learning), or a combination of both (e.g, hybrid models), have been proposed (see Blaga et al., 2019; Yang et al.,61

2018; van der Meer et al., 2018; Voyant et al., 2017; Antonanzas et al., 2016; Ren et al., 2015; Inman et al., 2013,62

for reviews). Furthermore, the existing studies span a range of time intervals and locations, with contrasting weather63

conditions. Because of these differences, the field would benefit from having a general verification framework for64

forecast analysis, as well as for the standardization of accuracy measures or metrics3 for forecast comparison.65

This article has three missions. The first is to introduce the distribution-oriented forecast verification framework66

to the solar forecasting community. The idea of using distributions—in particular the joint distribution of forecasts67

and observations—originates in the work of Murphy and Winkler (1987). A joint distribution contains all time-68

independent information relevant to verification. As such, it offers a more detailed view than the traditional measure-69

oriented approach in terms of forecast analysis. The second mission is to recommend an accuracy measure that70

should be universally reported in deterministic (also known as single-valued or point) solar forecasting studies—the71

root mean square error (RMSE) skill score4 based on the optimal convex combination of climatology and persistence.72

Since the skill score is able to reflect the inherent difficulties in different forecasting situations, it allows forecast73

comparisons based on relative improvements, rather than on an absolute error size. The third mission is to look into a74

series of practical issues in terms of forecast verification, such as data processing or implementation of the reference75

forecasting methods, with the goal of helping users better understand the relative strengths and weaknesses of various76

forecasting models in a uniform manner.77

Even though the present authors represent a broad range of active researchers in the solar forecasting community,78

there will always be difficulties in gaining universal consensus on the appropriate measures and methods to be used79

in general, or even more so in various specific cases. Nevertheless, the authors hope that the forecast verification80

∗Corresponding author. Tel.: +65 9159 0888.
Email address: yangdazhi.nus@gmail.com (Dazhi Yang)

2Generally, the phrase “solar forecasting” refers to both solar power forecasting and solar irradiance forecasting. For the latter, forecasters are
interested in two irradiance quantities, namely, global horizontal irradiance (GHI) and direct normal irradiance (DNI). Methodologically, there is
not much difference in treating GHI and DNI. However, DNI forecasts are usually less accurate due to the larger variability in DNI than in GHI.

3“Measures” and “metrics” are distinct concepts in measure theory. A measure µ on a set X is a mapping µ : A → [0,∞] defined on a σ-algebra
A that satisfies non-negativity, null empty set, and σ-additivity, that is µ(A) ≥ 0 ∀ A ∈ A, µ(∅) = 0, and µ(t j∈NA j) =

∑
j∈N µ(A j), where symbol

t denotes disjoint union (Schilling, 2017). On the other hand, a metric is a distance measure d : X × X → [0,∞] that satisfies definiteness,
symmetry, and triangle inequality, that is d(x, y) = 0 iff x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X. (Schilling, 2017).
Nonetheless, moving out from measure theory, the two terms are often used interchangeably, e.g., “accuracy measure” and “error metrics” use the
words “measure” and “metric” in their everyday sense. To most forecasters, especially forecast practitioners, they both refer to functions of forecast
errors, such as mean bias error (MBE), mean absolute error (MAE), or root mean square error (RMSE).

4Skill score is also known as forecast skill. It is a class of accuracy measures that gauge the relative improvement of a method over a reference
method, see Eqs. (3) and (4) below.
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procedure proposed here can lead to a greater interpretability of results, and even in direct—“apples to apples”—81

comparisons of techniques. An ultimate goal is to establish the best practices that can be upgraded and refined as the82

body of knowledge and experience grows.83

The organization of this study is as follows. The forecast verification problem and the perceived difficulties are84

elaborated in Section 2. Distribution-oriented forecast verification methods are discussed and exemplified in Section 3.85

The recommended accuracy measure is justified in Section 4, alongside with some discussions on practical concerns.86

Section 5 concludes with a series of recommendations.87

2. Problem description88

Solar forecasting is a term applied to any predictive form of estimating the solar energy resource ahead of time.89

With a fast-growing global portfolio of solar energy installations using various technologies, the need for solar fore-90

casting to facilitate improved operations and electricity market compatibility is paramount. A rapidly expanding sci-91

entific community in the subdomain of energy forecasting has contributed numerous methodologies and approaches92

towards solar forecasting (Hong et al., 2016). Accuracy is a major goal of most, if not all, forecasters. The variability93

in solar irradiance intrinsically governs predictability (Pedro and Coimbra, 2015). Therefore, it is particularly interest-94

ing to compare forecasts generated by different models, using data from different locations,5 or different time periods95

(Yang, 2019a).96

Current methods of solar forecast verification are mostly limited to using measures as indicators of goodness of97

forecasts. In other words, solar forecasters compare the performance of different models based on some error metrics,98

and can then draw conclusions. Under this type of verification procedure, any conclusion is ambiguous in at least two99

ways: (1) it is unclear what the forecast objective is, and (2) it is unclear how the model of interest performs against100

other models that are not included in the study. These problems are described in sections 2.1 and 2.2, respectively.101

2.1. What is a good forecast?102

The word “objective” refers to goals given to a forecaster prior to verification. It is natural to think of the objective103

as “small RMSE,” “high skill score,” or “high economic value.” Nonetheless, these objectives often lack generality,104

and can even be conflicting at times. In that, one may end up collecting a large, and possibly redundant, set of error105

metrics. This is exemplified by the work of Zhang et al. (2015), in which a suite of 17 metrics was assembled based on106

a lengthy discussion process that involved stakeholders from both the meteorological and power systems communities.107

In other cases, new metrics are proposed to meet a specific objective. This is exemplified by the work of Vallance108

et al. (2017), in which the ability to forecast ramps in irradiance transients is gauged by two new metrics.109

Assembling or introducing new members to a pool of error metrics is meaningful to the field of solar forecasting.110

By presenting a wide spectrum of error metrics, forecasters are able to choose freely among the metrics that can “best”111

highlight the strengths of their results. There are many studies that propose, contrast, and recommend error metrics112

to forecasters (e.g., Vallance et al., 2017; Zhang et al., 2015; Hoff et al., 2013; Beyer et al., 2009). However, despite113

the well-argued discussions, these works can rarely change another forecaster’s sentiment towards some specific114

metrics, if they are perceived as having important advantages or disadvantages. Hence, for each argument that favors115

a metric, one may find a counter-argument against it (see Chai and Draxler, 2014; Willmott and Matsuura, 2005).6116

Furthermore, since there are countless publications that discuss and conclude that one metric is better than the other,117

it is not difficult to cite those articles that support any choice the author wishes to make (Chai and Draxler, 2014). The118

obvious consequence is a field with diverse usage of error metrics. Nonetheless, this is not unique to the emerging119

field of solar forecasting. Historically, the lack of unified forecast verification procedure has been discussed by many120

5Verification of forecasts, particularly those made by a numerical weather prediction (NWP) model, can be carried out spatially (see Gilleland
et al., 2010). Spatial averaging and spatial scale have a strong impact on forecast accuracy (Lorenz et al., 2016). This work, however, is constrained
to the verification of forecasts at point locations.

6During the initial stage of this study, the original idea was to propose a specific suite of metrics to the community. However, soon it became
obvious that it is impossible to make everyone agree. No consensus can be established on things such as whether MAE or RSME should be favored,
whether normalized metrics should be used, or with which quantity the RMSE should be normalized: the mean, maximum, 1000 W/m2, or square
root of second moment.
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Table 1: Simulated clear-sky index (κ, dimensionless) and clear-sky GHI (c, in W/m2) data. The κ simulation follows Eqs. (1) and (2).

Day 1 Day 2 Day 3 Day 4 Day 5

Index κ c Index κ c Index κ c Index κ c Index κ c

1 1.000 169 12 0.987 170 23 0.824 176 34 0.914 182 45 0.691 168
2 0.941 389 13 0.928 389 24 0.749 397 35 0.993 403 46 0.954 380
3 0.997 587 14 0.987 589 25 0.577 597 36 0.955 601 47 0.683 576
4 0.815 739 15 0.919 743 26 1.000 752 37 0.972 753 48 0.989 728
5 0.871 832 16 0.730 836 27 0.561 846 38 0.770 845 49 0.999 820
6 0.999 859 17 0.393 864 28 0.968 874 39 0.912 871 50 0.998 845
7 0.999 817 18 0.873 822 29 0.972 832 40 0.973 827 51 0.895 800
8 0.963 710 19 1.000 716 30 0.952 724 41 0.995 719 52 0.938 687
9 0.995 546 20 0.925 552 31 0.993 558 42 0.989 553 53 0.648 516
10 0.710 340 21 0.984 346 32 0.960 351 43 0.714 345 54 0.960 308
11 0.998 121 22 0.671 124 33 0.992 130 44 0.918 125 55 0.871 105
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Figure 1: A window of 55 simulated hourly GHI and clear-sky GHI data points (with zenith angle < 85◦). Forecasts generated by three forecasters
over the same window are overlaid. The novice uses 1-step-ahead clear-sky persistence model, the optimist always uses 0.95 times of clear-sky
GHI as forecasts, and the statistician uses the true conditional mean as forecasts.

experts from other relatively mature fields (e.g., Murphy and Winkler, 1987; Armstrong, 2001; Fildes et al., 2008),121

but nothing seems to have changed (Gneiting, 2011).122

At this stage, it is essential to ask the question: “what is a good forecast?” It is known, a priori, that different
metrics favor different forecasts. To put this issue in perspective, a simulation study is presented. Suppose diurnal
variation of the hourly clear-sky index, i.e., the ratio between the global horizontal irradiance (GHI) and clear-sky
GHI, at an arbitrary location follows:

κt = 1 − z2
t , (1)

where κt denotes the clear-sky index at time t, zt ∼ N(0, σ2
t ), and σ2

t follows:

σ2
t = 0.15z2

t−1 + 0.3σ2
t−1 + 0.07. (2)

With initial values z0 = 0 and σ2
0 = 0.01, the κ time series is simulated for 55 daylight hours (herein defined to be123

data points with a zenith angle < 85◦), or 5 days. The simulated data points are tabulated and plotted in Table 1 and124

Fig. 1, together with the corresponding clear-sky GHI (c) values. The McClear model (Lefèvre et al., 2013) is used to125

estimate c.126

Based on the simulated time series, three forecasters are asked to generate forecasts. The novice has no skill to127

offer, and thus issues 1-step-ahead persistence forecasts on κ, i.e., φt = κt−1, where symbol “φ” denotes the forecast128

clear-sky index. The optimist knows it is sunny in that location, and always uses φt = 0.95. The statistician has129

knowledge about the inherent model, and thus issues the true conditional mean as forecasts, i.e., φt = 1−σ2
t . These φ130

values are then converted to GHI forecasts with clear-sky GHI values at the forecast timestamps. The results in terms131

4



of three error metrics, namely, mean bias error (MBE), mean absolute error (MAE), and RMSE7 are shown in Table 2.132

The results are inconclusive, because each forecaster is best in terms of a particular error metric.133

Table 2: MBE, MAE, and RMSE, in W/m2, of the three forecasters in the simulation study. Column-wise best results are in bold.

Forecaster MBE MAE RMSE

Novice -1.32 79.80 127.12
Optimist 33.45 53.96 100.51
Statistician 11.43 58.08 93.97

The result of the above simulation study contradicts the common belief that knowing the inherent (physical or134

statistical) process is the determining factor behind making good forecasts. This contradiction is attributed to how135

the goodness of forecasts is defined. To most solar forecasters, “good forecast” is implicitly equivalent to “small136

error.” However, the pitfalls of this definition become apparent whenever contradicting rankings of models materialize.137

In order to resolve such contradictions, solutions might be obtained from the field of meteorology, where forecast138

verification is well studied.139

Murphy (1993) outlined three types of goodness that jointly define a good forecast:140

1. consistency—correspondence between forecasts and judgments;141

2. quality—correspondence between forecasts and observations; and142

3. value—incremental benefits of forecasts to users.143

2.1.1. Consistency144

Consistency is quite an abstract concept: a forecast is consistent if it corresponds with the forecaster’s best judg-145

ment. Murphy (1993) argued that such a judgment must contain an element of uncertainty, because the forecaster’s146

knowledge on the forecasting task is necessarily incomplete. In probabilistic forecasting, consistency can be ensured147

by adopting strictly proper scoring rules (Gneiting and Raftery, 2007). With that, forecasters are rewarded with the148

best scores if and only if their forecasts correspond with their judgment (Murphy and Winkler, 1971). The Brier score149

and continuous ranked probability score (CRPS), both of which frequently used in probabilistic solar forecasting, are150

both strictly proper (Gneiting and Raftery, 2007).151

On the other hand, in deterministic forecasting, forecasters have to translate their probabilistic judgment through152

a statistical functional,8 T (F), which summarizes the forecast distribution, F. The reader is referred to Gneiting153

(2011) for the formal definition. Informally, the scoring function S is consistent if E[S ( f , x)] ≤ E[S (g, x)], for all154

f ∈ T (F), where f is an evaluation of the functional, g is any forecast, and x is a future observation. This definition155

implies that S is consistent if and only if any f ∈ T (F) is an optimal forecast under S . For example, if the mean156

value of a forecaster’s judgmental probability distribution is of interest, then RMSE is a consistent accuracy measure,157

because RMSE is minimized by forecasting the mean of the predictive distribution. In the above simulation study,158

the statistician provided the optimal forecasts under RMSE. The optimist, although winning the competition with159

respect to MAE, did not provide optimal forecasts under MAE (MAE is minimized by forecasting the median of the160

predictive distribution).161

The underlying assumption of using consistency as a measure of goodness of forecasts is that the forecasters162

receive a directive in the form of a statistical functional to transform their probabilistic judgment into a deterministic163

forecast. For instance, the directive could be “forecast the mean of your probabilistic judgment.” Only then, a scoring164

rule can be identified as consistent if it is optimized by the chosen directive. However, Jolliffe (2008) noted that165

7By surveying 1000 recent forecasting papers, Yang et al. (2018) found that there are about 20 commonly used metrics in solar forecasting,
with MBE, MAE, and RMSE being the most popular ones. They can thus be considered most typical, which is why they are used in the simulation
study. If the forecast and observed GHI at time t are denoted using ft and xt , respectively, then MBE =

∑55
t=1( ft − xt), MAE =

∑55
t=1 | ft − xt |, and

RMSE =

√∑55
t=1( ft − xt)2

8Any function of a probabilistic distribution is called a statistical functional. Examples of functionals include mean, median, or variance.
Generally, it is written as T (F), where F is a distribution.
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the very definition of “consistency” is circular: a forecaster can elect to start by choosing a scoring rule. Once the166

forecasts are made by optimizing the scoring rule, the consistent directive naturally follows.167

Consistency implies a theoretical guideline for choosing the most appropriate accuracy measure during fore-168

casting. For most statistical and machine-learning models, the model parameter or weights are estimated or fitted169

according to some cost function. In this regard, a consistent error measure should be used during verification. For170

instance, the ordinary least squares regression minimizes the sum of squared errors, hence, RMSE is an appropriate171

metric to report. Nonetheless, such guideline might not favor forecast comparison in practice, since it would further172

divide the field. Further studies are necessary.173

2.1.2. Quality174

Quality is a familiar concept to all solar forecasters, as it refers to the correspondence between forecasts and175

observations. For example, MAE and RMSE are both measures that assess the overall accuracy of forecasts. Accuracy176

is an aspect of forecast quality. It can be interpreted through quantitative measures. Besides accuracy, other aspects177

of forecast quality known to solar forecasters, such as bias, association, skill, or uncertainty, can be assessed through178

MBE, correlation, skill score, or variance. In forecast verification, the traditional way of comparing measures, may it179

be positively oriented (the larger, the better, such as skill score), negatively oriented (the smaller, the better, such as180

RMSE), or center oriented (the closer to a center value, the better, such as MBE), is known as the measure-oriented181

approach.182

As mentioned earlier, one disadvantage of using the measure-oriented approach is the subjectivity in choosing183

measures. Since selecting which measures to report is essentially a decision that is internal to a forecaster, the reasons184

behind that selection are by default unknown to anyone who is observing the forecast verification procedure from185

an external view point. In academia, forecasters are authors, whereas observers are editors, reviewers, and readers.186

If the optimist in the simulation study only reports MAE in an article, the observers will not be able to fully realize187

the underlying pitfalls of those forecasts, but will have no other choice than to accept their results. The simulation188

study above might over-simplify the state-of-the-art solar forecasting scenarios in comparison with actual forecasting189

models. Because those are typically much more complex, it would be even more difficult to interpret their results190

through only a few measures.191

A related question is, if two forecasting methods yield the same MBE, RMSE, or skill score, are they equally192

good? The obvious answer is “no.” Measures only provide an overall assessment of forecast quality. Since error193

metrics are often computed based on a collection of samples (e.g., rolling hourly forecasts made over a year), this194

gives infinite ways to result in the same error-metric value. The reader is referred to Fig. 1 in Vallance et al. (2017)195

for an example on how two sets of drastically different forecasts can lead to the same RMSE. One solution frequently196

being used in the solar forecasting literature is to report the regime-dependent error metrics, i.e., to differentiate the197

errors by classes of prevailing situations. For instance, one can separately report errors for overcast-, clear-, and all-198

sky conditions. Alternatively, one can also report errors for different times of day, different times of year, or different199

day types. However, the dimensionality of forecast verification scales with the number of classes, e.g., an RMSE200

table will become three, if three sky conditions are analyzed separately, or ten, if ten day types are defined. The error201

contingency table often gets out of control quickly. What has just been discussed is known as forecast analysis, which202

is generally defined as the procedure selected to understand the composition of the overall quality.9203

Since both assessment and analysis of forecast quality are driven by the information embedded in the forecast–204

observation pairs, it is useful to define the total amount of information available to a forecaster during verification.205

By defining the entirety of information, a forecaster is no longer limited by the set of summary statistics. Stated206

differently, if the temporal sequence of forecast–observation pairs is not of interest, the joint distribution of forecast207

and observation can be used to study the skillfulness of the forecasts, since it contains all time-independent information208

relevant to forecast verification. This distribution-oriented approach to forecast verification was proposed by Murphy209

and Winkler (1987). It has gained high popularity in the field of meteorological forecasting, but is less known by solar210

forecasters.211

This particular framework needs to be discussed because it provides an alternative view to the traditional measure-212

oriented approach. It offers high flexibility in terms of accessing the information. In fact, the majority of graphical213

9A related issue is how to decompose these overall quality metrics. Some options are discussed in Section 3.
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methods (e.g., Taylor diagram, target diagram, or error heat map) and accuracy measures (e.g., MBE, RMSE, or214

Kolmogorov–Smirnov test integral) known to solar forecasters are specific methods under this general framework.215

More importantly, the Murphy–Winkler framework is augmented by Bayes’ theorem, in that the joint distribution216

can be written equivalently as the product of marginal and conditional distributions, making the embedded infor-217

mation more accessible. Last but not least, the distribution-oriented approach establishes communication between218

forecast quality and accuracy measure. Aside from those aspects of forecast quality mentioned earlier, other aspects219

such as reliability, resolution, or discrimination can easily be defined and quantified. Whereas more details on the220

Murphy–Winkler framework are provided in Section 3, with a case study, it is noted that the framework is essential to221

understanding the goodness of forecasts.222

2.1.3. Value223

Value relates to the benefits realized, or cost incurred, by individuals or organizations who use the forecasts during224

their decision making. Murphy (1993) pointed out that the forecasts by themselves possess no intrinsic value, because225

they only acquire value through influencing the decisions made by their users. Most often, the value of solar forecasts226

is translated into and measured in monetary units.10 For instance, by reducing the RMSE of the forecasts by x W/m2,227

the owner of a photovoltaic (PV) system with energy storage may expect to gain an additional $y per year through228

optimizing the feed-in strategy of the system. In a detailed case study, Law et al. (2016) discussed the benefits of229

improvements in irradiance forecasting for a concentrated solar thermal power plant in this context. An alternative230

view was given by Antonanzas et al. (2017), where they compared the profit from different forecasting methods with231

respect to that from perfect forecasts.232

Naturally, such benefits or costs depend on the characteristics of a particular decision-making problem. Thus, the233

third type of goodness is not under the control of forecasters, but is determined and appreciated by decision makers.234

Furthermore, this goodness of forecast is non-transferable by default. That is, one cannot simply scale the value235

realized by others, using the characteristics of the problem at hand. Because of the different courses of action and236

payoff structures available to different decision makers, there is little reason to assume an ex post value would apply237

in an ex ante study. A good forecasting strategy that creates high value to some users might not be appreciated by238

others.239

In parallel, it is believed that for a fixed and well-defined decision-making problem, the mapping between quality240

and value is monotone. In other words, higher forecast quality expectedly corresponds to higher value. In principle,241

this gives the forecaster the necessary motivation to provide the best possible (and hopefully “optimal”) forecasts.242

To give a perspective on what a “well-defined decision-making problem” can actually be, the case of the Australian243

National Electricity Market (NEM) is considered. In NEM, conventional generators submit bids every five minutes244

to the Australian Energy Market Operator. The latter tries to see how far up the bid stacks they have to proceed245

to meet their forecast net load (regional load forecast minus forecast of domestic and commercial PV generation).246

If the conventional generators miss their promised amount by more than a given tolerance, either above or below,247

they are penalized. There is presently a dramatic expansion in solar farm construction and these installations are248

price takers, i.e., not involved in making the spot market price. Hence, the solar plants would not be fined for poor249

forecasts, but could be curtailed whenever necessary. Under this regime, the decision-making problem might not be250

well defined, because the plant owners could always use the highest possible power generation as forecasts, since there251

is no monetary penalty imposed on over-forecasts. To level the playing field in a new regime, the solar plants could be252

penalized too, if they do not meet their forecasts. Given the new payoff structure, the cost of over-forecasts can be set253

to be equivalent to the cost of running spinning reserve to fulfill the difference between the forecast and the generated254

solar electricity. Similarly, the cost of under-forecasts would be the lost revenue that would have been generated if255

that extra potential energy were sold at the prevailing spot price at the time. In this case, the decision-making problem256

is well defined if the two costs are the same, then encouraging the forecasters to submit their optimized forecasts257

truthfully.258

10Other measures of value could be in terms of stability of the grid, customer satisfaction, etc. But how the value is measured does not affect the
discussion here.
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Figure 2: Monthly averaged day-ahead GHI forecast errors—RMSE [W/m2] and nRMSE [%] normalized by monthly mean irradiance values—in
Hamburg, Germany (53.63◦N, 9.99◦E), produced by the Integrated Forecasting System (IFS), an NWP system developed by the European Centre
for Medium-Range Weather Forecasts (ECMWF). It is evident that winter months have small RMSE but high nRMSE, which might be confusing.

2.2. The skill score259

The three types of goodness defined by Murphy (1993) provide a clear objective during forecast verification—260

while maintaining consistency, one should aim at maximizing quality. However, having a well-defined objective261

only helps the forecasters to analyze and thus make conclusions based on their own forecasting experiment. As the262

specialized literature expands rapidly, it is unrealistic to expand the scope of the experiment simultaneously, that is, to263

include all previously proposed methods as benchmarks. The obvious reason is that the data (information) available264

to one forecaster might not be available to others. Similarly, not all types of information available at one location or265

time is available at other places or times. Thus, to guarantee progress in the field, the community is forced to make266

comparison among different research works, based on a variety of reported measures of forecast quality.267

2.2.1. A false sense of cross-scenario comparability268

The variability of solar irradiance depends on climatic features, geographical location, timescale, and time period,269

among other factors. Even if the same forecast-generating strategy is employed, the hourly forecasts made for a loca-270

tion with predominant clear-sky conditions will have a significantly smaller RMSE as compared to 10-min forecasts271

made for a site with a tropical climate, where cloud formation is rapid and difficult to predict. Hence, if one wishes272

to compare forecast skills, some form of scaling (normalization) is needed for scale-dependent errors, such as MAE273

or RMSE. In a recent review paper, Blaga et al. (2019) used the normalized RMSE (nRMSE) as a basis for such274

comparisons.275

The particular form of normalization considered in Blaga et al. (2019) is through the mean of the observations,276

i.e., nRMSE is computed by dividing RMSE (e.g., in irradiance unit) with the mean of the observations. Whereas the277

final conclusion—nRMSE reported in the solar forecasting literature is getting smaller over the years—is factual, the278

methodology (directly comparing nRMSE results from various publications) used by the authors can be misleading.279

“Researchers are getting better at forecasting solar” is a priori knowledge, and it is easy to find evidence supporting280

that. However, nRMSE gives a false sense of cross-scenario comparability, which cannot be used to justify that one281

forecaster has better skill than the other. The word “cross-scenario” refers to forecasts generated for data with different282

predictability.11 One example is shown in Fig. 2, where RMSE and nRMSE lead to contradictory conclusions.283

As mentioned earlier, forecast error is tightly linked to predictability, which is related to variability and uncertainty.284

Equivalently, it can be stated that conditions with higher variability and uncertainty are harder to forecast, thus leading285

to larger expected errors. In forecasting, variability and uncertainty are often quantified by step change and variance,286

respectively. Since the ultimate aim is to have a measure that quantifies forecast skill, its dependency on variability287

11If two sets of forecasts are generated for datasets with the same variability, e.g., two PV systems with different nominal power at the same
location, nRMSE is a good normalization choice.
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and uncertainty has to be minimized if not removed completely. It is now clear that mean-normalized nRMSE cannot288

be used to compare forecast skills in general, because the mean is related to neither variability nor uncertainty. The289

same arguments can be applied to range-normalized nRMSE, max-normalized nRMSE, capacity-normalized nRMSE,290

and similar variants of nMAE.291

2.2.2. On the propagation of normalized accuracy measures in solar forecasting292

Normalized accuracy measures are popular in solar forecasting (Blaga et al., 2019). This is in contrast to the293

field of meteorology, where normalized accuracy measures are rarely used. For instance, in the book by Jolliffe and294

Stephenson (2012), there is not a single sentence that discusses normalized accuracy measures. Similarly, no trace295

of normalized accuracy measures can be found in Hyndman and Koehler (2006), in which the accuracy measures are296

discussed in the context of general-purpose univariate time series forecasting. Hence, some possible explanations on297

why normalized accuracy measures is so popular in solar forecasting are given next.298

The notion of normalization develops naturally when the forecast quantities are at different scales. On this point,299

the class of accuracy measures based on percentage errors, such as the mean absolute percentage error (MAPE),300

needs to be discussed. Measures based on percentage errors are not quite feasible in high-resolution solar forecasting301

since the irradiance and PV-generated power is near zero during early mornings and late afternoons, or when the302

clouds move in. Although the early morning and late afternoon cases can be trimmed with a zenith-angle filter before303

verification, a few missed forecasts on large irradiance swings during mid-day are enough to result in a very large304

MAPE. Therefore, to allow the forecast errors to be interpreted as a realistic percentage, the normalization is taken305

out of the summation, i.e., normalization is performed after aggregation. No such concerns exist when dealing with306

longer-term forecasts of global irradiance, e.g., on a daily basis.307

Normalized accuracy measures are used in wind forecasting, a more developed sub-domain of energy forecasting308

(Hong et al., 2016). In an effort to standardize metric usage in wind forecasting, Madsen et al. (2005) noted that the309

purpose of using normalized accuracy measures is to produce results independent of wind farm sizes. In addition, the310

authors recommended normalization by the installed capacity or mean observation. At that time (2005), published311

studies on solar forecasting were rare. When the field of solar forecasting started to bloom in the early 2010s, such312

normalization was adopted by solar forecasters, to whom wind forecasting was the most relevant literature to follow.313

Another compelling reason why normalized accuracy metrics are frequently used in solar (or wind) forecasting is314

that the end users (or “stakeholders”) are typically electrical engineers, business analysts or financial experts. These315

professionals are very familiar with percents, but not with a solar radiation unit such as W/m2 or a power unit such316

as MW. From this standpoint, the use of normalization is essentially dictated by the necessity for the end users to317

understand and correctly use the forecast results. Nonetheless, grid operators almost never compare their forecasts318

across seasons, timescales, and let alone to forecasts of other grid operators. Therefore, in that context, the choice319

of normalized accuracy metrics is for convenience and internal communications, since a percentage metric is more320

accessible to a non-technical audience (decision-makers) than a MW metric. Since for grid operators the normalizing321

quantity, i.e. the denominator, is either constant (peak load) or similar (average load), the normalization does not322

affect the ranking of forecast accuracy. The grid operator preference for normalized accuracy metrics should not be323

construed as a decisive motivation to report only normalized error metrics in the academic community, because the324

global inter-comparability of forecast quality needs to be maintained.325

2.2.3. Problems with the skill score326

Since normalized accuracy measures cannot be used to compare forecasts made at different locations and timescales,
an alternative has to be sought. In modern solar forecasting, one of the first attempts to formally address the problem
of comparability was made in the early 2010s by Marquez and Coimbra in several publications (Marquez and Coim-
bra, 2011, 2013; Coimbra et al., 2013).12 In those studies, a well-known concept in meteorological forecasting called
skill score was introduced to the young field of solar forecasting. In the field of meteorology, the skill score, s, can be
defined based on some measure of accuracy A, namely,

s =
A f − Ar

Ap − Ar
, (3)

12Another early discussion was given by Beyer et al. (2009).
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where A f , Ap, and Ar are the accuracy of the forecasts of interest, accuracy of the perfect forecasts,13 and accuracy of
the reference forecasts, respectively (Murphy, 1988). For instance, s based on RMSE is

s = 1 −
RMSE( f , x)
RMSE(r, x)

, (4)

where f , r, and x are forecasts of interest, reference forecasts, and observations, respectively. For N samples,

RMSE( f , x) =

√√√
1
N

N∑
t=1

( ft − xt)2, (5)

RMSE(r, x) =

√√√
1
N

N∑
t=1

(rt − xt)2. (6)

The skill score s is often written as a percentage, representing the percent improvement in accuracy of the forecasts327

over the forecasts produced by a reference method. If s > 0, the forecasts of interest have a smaller RMSE than328

that of the reference forecasts, otherwise, s ≤ 0 indicates that the model of interest fails to outperform the reference329

forecasts. There are, however, two problems with using s to compare forecasts: (1) the choice of accuracy measure330

can be arbitrary, and (2) the choice of the reference forecasting method can be arbitrary.331

The first problem can be understood with a simple example. The computation of s requires a measure of forecast332

accuracy, A, which is based on a scoring function. Depending on the choice of A, s can be quite different. For instance,333

suppose RMSE(r, x) = 200 W/m2 and RMSE( f , x) = 100 W/m2, then sRMSE = 0.5. However, when the mean square334

error (MSE) is used, sMSE = 1 − (1 − sRMSE)2 is boosted to 0.75. Whereas the conversion between sRMSE and sMSE is335

straightforward, s calculated based on other metrics, such as MAE, would be different, and cannot be inferred from336

sRMSE or sMSE. Hence, there is no obvious solution to this but to recommend a consensus. At the moment, RMSE is337

the most common form of A in the literature (Blaga et al., 2019; Yang et al., 2018), and thus should be predominantly338

used in skill score computation. (This choice is discussed further in Section 4.1). Hereafter, the symbol s only denotes339

sRMSE, unless otherwise stated.340

One remedy to the second problem is to use a universally-accepted naïve reference model, so that s can be used—341

with appropriate caveats—to compare the accuracy of forecasts made across different locations or time periods. Skill342

score is built upon the notion that the forecast errors of a “no skill” reference method should sufficiently reflect the343

difficulty of the forecasting scenario. In business forecasting, random walk is often used as the reference, and the344

relative performance of the model of interest is gauged using the Theil’s U statistic, a concept similar to skill score345

(Makridakis et al., 2008). In meteorology, the so-called “climatology” is often used as the naïve reference (Jolliffe346

and Stephenson, 2012). In deterministic solar forecasting, one of the most popular naïve reference methods—for347

intra-hour and intra-day forecasts—is the clear-sky adjusted persistence, or simply, clear-sky persistence. Clear-sky348

persistence is conceptually no different from the seasonal naïve method described in Makridakis et al. (2008). That is,349

persistence forecasts are made based on the clear-sky index, and then adjusted back to irradiance using the clear-sky350

irradiance at each forecast timestamp. The clear-sky model used in clear-sky persistence can effectively describe two351

seasonal cycles (a yearly cycle and a daily cycle) in an irradiance time series. Some alternative seasonality adjustment352

approaches are discussed in Appendix A. As for day-ahead solar forecasting, the 24-h persistence14 and the daily-353

average climatology are popular. In this paper, an additional naïve reference, namely, the optimal convex combination354

of climatology and persistence is introduced, which is guaranteed to outperform both individual reference methods.355

Such recommendation is addressed at length in Section 4.2.356

13It should be noted that Eq (4) assumes the RMSE of the perfect forecast accuracy, Ap, is 0. However, in almost all statistical forecasting
frameworks, the models would assume some unpredictable white noise, i.e., non-zero RMSE even if a model perfectly describes the data-generating
process. Hence, the assumption here is that the Ap � Ar , so that it can be neglected.

14The term “24-h persistence” means the forecast at hour t on the day of interest is the same as the observation made at hour t on the previous
day. If the typical operational forecast submission lead time is considered, the method rather needs to be referred to as “48-h persistence,” since the
observations made two days prior to the operating day will be used as forecasts.
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2.3. The skill score defined by Marquez and Coimbra (2011)357

The skill score is not limited to the verification of deterministic forecasts of continuous random variable. It is358

also used in verification of deterministic forecasts of binary events (e.g, Gilbert skill score or Doolittle skill score),359

multi-category events (e.g., Gandin and Murphy score), and probabilistic forecast verification (e.g., Brier skill score360

or CRPS skill score), as described by Jolliffe and Stephenson (2012). While the reader is referred to Jolliffe and361

Stephenson (2012) for more details on the skill score concept, the version proposed by Marquez and Coimbra (2011)362

needs to be discussed. In deterministic solar forecasting, their version is one of the most notable alternatives to the363

skill score defined in Eq. (4).364

Marquez and Coimbra (2011) proposed their skill score, denoted here as s∗, based on the concept of “uncertainty”
(U) and “variability” (V):

s∗ =1 −
U
V
, (7)

where

U =

√√√
1
N

N∑
t=1

(
ft − xt

ct

)2

, (8)

V =

√√√
1
N

N∑
t=1

(
xt

ct
−

xt−1

ct−1

)2

, (9)

and f , x, and c are forecast, observation, and clear-sky expectation, respectively. Marquez and Coimbra noted that365

the ratio between U and V can be approximated by the ratio of the RMSE of the model of interest and the RMSE366

of clear-sky persistence, i.e., s∗ ≈ 1 − RMSE( f , x)/RMSE(r, x) = s. However, no detailed theoretical support was367

given in the different versions of that proposal (Marquez and Coimbra, 2011, 2013; Coimbra et al., 2013). Instead,368

the approximation was demonstrated empirically, using results from several time series models.369

By comparing s∗ to s defined in Eq. (4), it is not apparent why should the approximation between the two skill370

scores hold. In fact, s is the RMSE skill score of irradiance (or solar power) forecasts, whereas s∗ is the RMSE skill371

score of clear-sky index forecasts. Stated differently, the two scores verify different forecast quantities—the former372

verifies irradiance forecasts, and the latter verifies clear-sky index forecasts. However, upon careful analysis, one can373

arrive at the conclusion: if the κ forecast error and κ reference forecast error are both independent of the clear-sky374

expectation, then s∗ = s, see Appendix B. That said, such independence assumption is almost always violated to a375

certain degree, due to the imperfect clear-sky model, high sensitivity to three-dimensional effects for broken clouds376

situations, and the high sensitivity to errors in the atmospheric turbidity. Therefore, the clear-sky index forecast errors377

are often larger for low solar elevations (Sengupta et al., 2015). Consequently, one only observes s∗ ≈ s in most cases.378

2.4. Section summary379

This section has discussed and put forward a few new concepts related to deterministic solar forecast verifica-380

tion. In general, there are two approaches for forecast verification, namely, the measure-oriented approach and the381

distribution-oriented approach. The goodness of forecasts contains three elements: (1) consistency, (2) quality, and382

(3) value. Particularly interesting is that the distribution-oriented approach can help forecasters assess the quality of383

their forecasts in a systematic way—by relating various aspects of forecast quality to different accuracy measures—so384

that they can be interpreted. This is discussed further in Section 3.385

Whereas the distribution-oriented approach is primarily recommended for forecast analysis, i.e., to be used within386

a forecasting case study, the skill score is recommended for cross-work forecast comparison. It is important to note387

that the measure-oriented and distribution-oriented approaches are complementary and not substitutive. Skill score is388

computed based on the accuracy measure of a reference model that can sufficiently describe the difficulty (variability389

and uncertainty) of a forecast situation. It gauges the overall skillfulness of the forecaster. Considering the importance390

and economic consequences of inter-comparing a variety of forecasting models in practice, the RMSE skill score391

should be mandated and standardized. It should be noted that whenever climatology, persistence, or their combination392
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Table 3: Definition, interpretation, and quantification of Murphy–Winkler factorizations (Jolliffe and Stephenson, 2012; Murphy and Winkler,
1987).

distribution definition interpretation (some specific methods of) quantification

p(x| f ) (related to)
calibration

A set of deterministic forecasts is perfectly calibrated if E(x| f ) =∫
xp(x| f )dx = f .

(1) calibration, reliability, or type 1 conditional bias: E f [ f −
E(x| f )]2;
(2) resolution: E f [E(x| f ) − E(x)]2.

p( f ) (related to)
refinement,
or sharpness

Refinement or sharpness is an aspect that usually applies only to
probabilistic forecasts (Murphy, 1997). In deterministic forecast
verification, if a forecaster produces the same forecast all the time,
it is said to be completely unrefined. However, the complete re-
finement is difficult to define for deterministic forecasting (Murphy
et al., 1989), but p( f ) has to be equal to p(x) for perfect forecasts.

(1) Kolmogorov–Smirnov test statistic: max |F( f ) − F(x)|;
(2) earth mover’s distance or first Wasserstein distance: the
area between the two ECDFs. (The formal definition is tech-
nical and thus omitted.)

p( f |x) likelihood If p( f |x) is zero for all values x but one, the forecast is perfectly
discriminatory. If p( f |x) is the same for all values of x, the forecast
is not at all discriminatory.

(1) discrimination 1, or type 2 conditional bias: Ex[x −
E( f |x)]2;
(2) discrimination 2, or simply discrimination: Ex[E( f |x) −
E( f )]2.

p(x) uncertainty,
or base rate

If p(x) is a fairly peaked distribution, the scenario has relatively
small uncertainty (and thus easier to forecast) as compared to a
scenario where p(x) is fairly uniform.

(1) variance: V(x);

(2) kurtosis:
E

[
(x − E(x))4

]
(
E

[
(x − E(x))2

])2 .

is used in a solar forecasting context, it is intended to be applied to the clear-sky index, or other detrended variable of393

interest. However, the reference forecasts, i.e., rt in Eq. (4), should be the original variable of interest, i.e., GHI, DNI,394

or PV power output. This is discussed further in Section 4.395

3. Distribution-oriented approach for forecast verification396

The distribution-oriented forecast verification framework is quite general. Before one starts to wonder what joint397

distribution15 has to do with forecast verification, most likely he or she has already used this framework. It is com-398

mon to use a forecast–observation scatter plot to check forecast quality. One may draw some conclusions based on399

whether the point cloud is centered on the identity line, or how dispersed the scatter points are. In other cases, a400

forecaster may wish to check how the scatter points are distributed along the x-axis, or whether the spread of forecasts401

vary for different observation ranges. In fact, most forecast accuracy quantification—visually or through accuracy402

measures—are just summaries of the joint distributions, or equivalently, the marginal and conditional distributions.403

The relationship between joint, marginal, and conditional distributions of two random variables can be expressed us-404

ing Bayes’ theorem. When these variables are the forecast and the observations, the same relationship is referred to405

as Murphy–Winkler factorization in meteorology (Murphy and Winkler, 1987).406

Murphy–Winkler factorizations are:

p( f , x) = p(x| f )p( f ), (10)
p( f , x) = p( f |x)p(x), (11)

where p denotes distribution, f and x represent forecasts and observations, respectively. Eq. (10) is called the407

calibration–refinement factorization, whereas Eq. (11) is called the likelihood–base rate factorization. The naming408

convention is quite intuitive. For example, the p(x| f ) term in Eq. (10) describes the spread of the observations, given409

a particular forecast. For a good correspondence, the forecast is said to be calibrated or reliable. Mathematically, the410

forecasts are perfectly calibrated if E(x| f ) =
∫

xp(x| f )dx = f . The reader is referred to Table 3 for an interpretation411

of other conditional and marginal distributions, and Murphy (1997) for a list of aspects of forecast quality.412

Verifying the above conditional and marginal distributions is equivalent to verifying the joint distribution. For
instance, given two sets of forecasts, f1 and f2, by comparing p(x| f1) and p(x| f2), one can conclude whether one set of
forecasts is more reliable than the other, see Moskaitis (2008); Murphy et al. (1989) for case studies. Whereas linking
the forecast distributions to aspects of forecast quality provides forecasters with insights regarding their forecasts,

15Formally, we call a function p(x, y) the joint distribution of random variables X and Y if p(x, y) ≥ 0, ∀(x, y);
∫ ∞
−∞

∫ ∞
−∞

p(x, y)dxdy = 1; and for
any setA ⊂ R × R, P[(X,Y) ∈ A] =

∫∫
A

p(x, y)dxdy, P[(X,Y) ∈ A] denotes the probability of (X,Y) in setA (Wasserman, 2013).

12



such results are easier to interpret if the different aspects of forecast quality can be quantified using measures. For
instance, consider the bias–variance decomposition of MSE:

MSE =

∫∫
( f − x)2 p( f , x)d f dx

=E[( f − x)2]

=V( f − x) + [E( f ) − E(x)]2

=

marginal dist.︷         ︸︸         ︷
V( f ) + V(x)−

association︷      ︸︸      ︷
2cov( f , x) +

unconditional bias︷            ︸︸            ︷
[E( f ) − E(x)]2, (12)

where the overhead braces show the representation of each term. In this decomposition, V( f ) and V(x) are variances413

of forecasts and observations, respectively. Their values can be used as a proxy for measuring the similarity between414

p( f ) and p(x). If the forecasts were perfect, the two marginal distributions would be exactly the same, and so would415

the variances.16 Similarly, the cov( f , x) term can be written as correlation, namely,
√
V( f )V(x) · cor( f , x), which416

denotes the association between forecasts and observations. Lastly, the [E( f ) − E(x)]2 term represents the squared417

unconditional bias, i.e., MBE2. This example illustrates the complementarity between the measure-oriented approach418

(e.g., verification using MBE, correlation, or variance of the forecasts) and the distribution-oriented approach (an-419

alyzing the joint, conditional, and marginal distributions of forecasts and observations). Some of the widely used420

measures in solar forecasting, such as MBE, RMSE, or the Kolmogrov–Smirnov test integral, are related to their421

respective distributions in Appendix C.422

Besides the bias–variance decomposition, MSE can also be decomposed following the calibration–refinement and
likelihood–base rate factorizations:

MSE =V(x) +

type 1 conditional bias︷              ︸︸              ︷
E f [ f − E(x| f )]2 −

resolution︷                  ︸︸                  ︷
E f [E(x| f ) − E(x)]2, (13)

MSE =V( f ) +

type 2 conditional bias︷              ︸︸              ︷
Ex[x − E( f |x)]2 −

discrimination︷                  ︸︸                  ︷
Ex[E( f |x) − E( f )]2 . (14)

A derivation of these decompositions is shown in Moskaitis (2008). As annotated above the equations, different terms423

in the decomposed forms explain different aspects of forecast quality.424

The type 1 conditional bias, E f [ f −E(x| f )]2, indicates the degree of correspondence between the mean observation425

given a particular forecast and the conditioning forecast, i.e., calibration or reliability. Recall that perfect calibration is426

when E(x| f ) = f , so the smaller this term is, the better. Resolution accounts for the difference between conditional and427

unconditional mean observation, which is reflected by E f [E(x| f )−E(x)]2. If E(x| f ) = E(x), it means the data samples428

have no resolution. Since it is desirable to have the generated forecasts to be followed by different observations429

(so that the forecasts are meaningful), this term should be maximized. This is also reflected by the negative sign430

in front of that term. The type 2 conditional bias, Ex[x − E( f |x)]2, indicates the degree of correspondence between431

the mean forecast given a particular observation and the observation. Naturally, this term should be as small as432

possible. Lastly, discrimination denotes the difference between the conditional and unconditional mean forecasts, i.e.,433

Ex[E( f |x)−E( f )]2, which indicates how forecasts are differentiated for different observation values. This terms needs434

to be maximized.435

The numerical evaluation of these decomposed factors can be difficult. When Murphy and Winkler (1987) pro-436

posed these decompositions, a binary x was used in their case study, which greatly simplifies the computation. In437

Moskaitis (2008), the evaluation was performed by discretizing the continuous random variable—tropical cyclone438

intensity—into bins. Recently, Yang and Perez (2019) used kernel conditional density estimation (KCDE) to estimate439

the conditional expectations, namely, E(x| f ) and E( f |x), which removes the dependency on binning. The code for the440

KCDE-based approach is available in the supplementary material of that paper.441

16However, having identical variances does not imply identical distributions; and having identical distributions does not imply the forecasts are
perfect.
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Figure 3: Joint and marginal distributions of 24-h-ahead hourly NAM forecasts and SURFRAD observations at (a) Desert Rock, Nevada (36.624◦N,
116.019◦W), and (b) Penn. State Univ., Pennsylvania (40.720◦N, 77.931◦W), from 2015 to 2016. The contour lines show the 2d kernel densities.

In contrast to numerical evaluation of Eqs. (13) and (14), visual inspection is more straightforward and enables a442

forecaster to appreciate the properties of the forecasts in great detail. In general, visualizing the error distribution is a443

powerful way of communicating the performance of a model. In line with the Murphy–Winkler factorizations, an x– f444

scatter plot displays the joint distribution between observations and forecasts, and allows for visualizing the marginal445

distributions as well as specific conditional distributions.446

To exemplify the forecast verification procedure discussed in this section, a case study is presented. Fig. 3 shows447

the joint and marginal distributions of 24-h-ahead hourly forecasts of global horizontal irradiance (GHI) produced by448

the North American Mesoscale (NAM) forecast system against the observations collected by the Surface Radiation449

Budget Network (SURFRAD), at two locations with distinct climate over a period of two years. Whereas the joint450

distribution at the Desert Rock (DRA) station has approximately equal probabilities on both sides of the diagonal,451

the forecasts at the Penn. State Univ. (PSU) station over-predict GHI, i.e., the probability density is higher above452

the diagonal, where f > x. A closer examination of the 2d kernel density contours reveals that the NAM forecasts453

at DRA drift slightly below the identity line for high-irradiance conditions. For mid- and low-irradiance conditions454

at DRA, the forecasts are slightly above the identity line. This observation warrants an irradiance-condition-based455

post-processing treatment. Similar observations can be made for forecasts at PSU.456

The histograms shown in Fig. 3 denote marginal distributions, p( f ) (to the right) and p(x) (on the top). Since the457

shape of the histograms depends largely on bin width, different choices may affect the forecaster’s judgment differ-458

ently. In this regard, overlaying the empirical cumulative distribution functions (ECDFs) of f and x could be useful at459

times. Fig. 4 demonstrates such plots using the same data. Visually, the ECDFs of forecasts and observations at DRA460

align better than those at PSU. At PSU, f is stochastically greater than x (the ECDF of f lies below and hence to the461

right of that for x). Formally, the Kolmogorov–Smirnov test computes the statistic Dn = max |Fn( f ) − Fn(x)|, i.e.,462

the maximum absolute distance between the ECDFs of forecasts and observations. In the present case, Kolmogorov–463

Smirnov tests conducted at the two stations both reject the null hypothesis—two distributions are equal—at a signifi-464

cance level of 0.05.465

As compared to joint and marginal distributions, the visualization of conditional distributions is more challenging.466

Whereas some authors plot the individual quantiles or use box plots to represent the distributions, ridgeline plots467

are employed here, see Fig. 5. In this plot, p(x| f ) and p( f |x) at both stations are represented using overlapping lines,468
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Figure 4: Marginal distributions of forecasts and observations described in Fig. 3.

Table 4: Bias–variance decomposition (see Eq. 12) and Murphy–Winkler factorization (see, Eqs. 13 and 14) of 1–24-h-ahead NAM ( f ) against
SURFRAD GHI (x), at DRA and PSU stations over 2015–2016. For interpretability, all metrics are written in squared form, so that the bases have
the unit of W/m2, except for correlation ρ, which is dimensionless.

MSE V(x) V( f ) ρ( f , x) [E( f ) − E(x)]2 E f [ f − Ê(x| f )]2 E f [Ê(x| f ) − E(x)]2 Ex[xg − Ê( f |x)]2 Ex[Ê( f |x) − E( f )]2

DRA 108.292 297.702 288.422 0.94 22.672 28.022 278.682 38.882 270.092

PSU 155.112 269.832 275.262 0.85 41.732 64.412 229.862 61.242 235.402

which create the impression of a mountain range. Fig. 5 (a) and (c) reveal that p(x| f ) is mostly centered on the forecast469

value, i.e., E(x| f ) is close to f , indicating small type 1 conditional bias in NAM forecasts. On the other hand, type 2470

conditional bias is found to be significant for high values of x, see p( f |x) for x = 1050 W/m2 in Fig. 5 (b) and (d).471

The distribution-oriented verification technique is often complemented with summary measures of the different472

aspects of forecast quality. Table 4 shows the quantification of these aspects using the bias–variance decomposition473

and Murphy–Winkler factorization, as stated in Eqs. (12)–(14). Note that the decomposed terms listed in Table 4474

do not add up exactly to MSE, due to the uncertainty introduced during KCDE. Such discrepancy is however small,475

and thus does not affect this analysis. In terms of correlation, a higher ρ = 0.94 is observed at DRA as compared to476

0.85 at PSU, indicating a better association between forecasts and observations at DRA. The square of unconditional477

bias, [E( f ) − E(x)]2, is also significantly smaller at DRA, agreeing with the earlier observation made using the joint478

distribution plots. Since a smaller type 1 conditional bias, E f [ f − Ê(x| f )]2, means higher calibration—the forecasts479

at DRA are more reliable than those at PSU. Similarly, smaller type 2 conditional bias, higher resolution, and higher480

discrimination observed at DRA all lead to the conclusion that the NAM forecasts at DRA have better forecast quality481

than those at PSU. This conclusion confirms what could be expected because of the much cloudier climate of the latter482

station.483

Based on the case study above, it is evident that the distribution-oriented forecast verification is useful in assisting484

forecasters to make informed decision based on forecast quality. In other cases, the same methodology can be applied485

to compare forecasts made using different methods, thus providing more information than using MSE values alone.486

This verification procedure leads to more meaningful conclusions than statements such as “the MSE at location A487

is smaller than that at location B, and thus the forecasts at location A are better.” Nevertheless, should one wish to488

examine the relative accuracy gain from the reference method, the quantification of aspects of forecast quality can489

be carried out with the reference forecasts, namely, the optimal convex combination of climatology and persistence,490

as exemplified in Table 5. Comparing the two tables, it is obvious that in the case of NAM, the NWP-based model491

dominates the 24-h persistence in all aspects except for the unconditional and type 1 conditional bias. Nonetheless,492

such bias in NWP forecasts can be trimmed with regression-based post-processing, and thus does not affect one’s493

confidence in opting for the NAM model.494

To promote the uptake of this distribution-oriented approach, data and code for reproducing all results appeared495

in this section are provided in Appendix D.496
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Figure 5: Conditional distributions of 24-h-ahead hourly NAM forecasts and SURFRAD observations. p(x| f ) are shown in (a) and (c) for Desert
Rock, Nevada (36.624◦N, 116.019◦W) and Penn. State Univ., Pennsylvania (40.720◦N, 77.931◦W), respectively. p( f |x) are shown in (b) and (d)
for the two stations, respectively.

4. Recommendations and practical concerns497

The traditional measure-oriented approach is complemented by the distribution-oriented approach. The two ap-498

proaches reflect different aspects of forecast quality and help forecasters analyze their forecasts. Generally, forecasters499

are encouraged to use any meaningful measure to gauge their forecasts. Ultimately, however, a “one-number sum-500

mary” of forecasts is still highly desirable, especially when scientists bring their forecasts to non-technical personnel,501

e.g., sales persons, politicians, or the general public. Therefore, in this section, some recommendations and practical502

concerns regarding the use of skill scores are discussed.503
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Table 5: Same as Table 4, but tabulating the forecast quality of 24-h-ahead forecasts made using the optimal convex combination of climatology
and persistence on clear-sky index.

MSE V(x) V( f ) ρ( f , x) [E( f ) − E(x)]2 E f [ f − Ê(x| f )]2 E f [Ê(x| f ) − E(x)]2 Ex[xg − Ê( f |x)]2 Ex[Ê( f |x) − E( f )]2

DRA 115.942 297.702 259.822 0.92 6.962 22.332 274.992 60.122 240.082

PSU 168.062 269.832 185.122 0.79 14.772 37.192 214.202 126.842 148.572

4.1. MBE-, MAE-, or RMSE-based skill score?504

The selection of RMSE to evaluate the skill score was made in Section 2.2.3. The arguments for that choice are505

presented in this section. The skill score belongs to the class of relative measures (Hyndman and Koehler, 2006),17
506

which means that a scale-dependent measure is needed for its computation. Since MBE, MAE, and RMSE are507

currently the most popular metrics (Yang et al., 2018), the discussion below considers all these options.508

MBE is defined as E( f − x), or equivalently, E( f ) − E(x). An opposite definition, E(x − f ), also exists in the509

statistics literature, which can be confusing. The latter definition originates from how a predictive model is constructed510

(see Makridakis et al., 2008).18 Defining the MBE to be “forecast minus observation” is more natural for solar511

forecasting, since an over-prediction (where forecasts are, on average, higher than observations) corresponds to a512

positive MBE, and an under-prediction corresponds to a negative MBE. MBE describes unconditional bias, and most513

statistical forecasting methods have MBE → 0. State-of-the-art operational solar forecasts would have some form514

of bias correction implemented, e.g., model output statistics (MOS). Therefore, having small MBE is more of a515

baseline requirement, rather than a credit-worthy feature among state-of-the-art forecasts. Furthermore, the MBE of516

the reference forecasts from clear-sky persistence has an expectation of zero, and thus makes the skill score undefined.517

To that end, MBE is unsuitable for skill score computation.518

The main difference between MAE, defined as E(| f − x|), and RMSE, defined as
√
E[( f − x)2], is that the latter519

penalizes large errors while the former gives the same weight to all errors. Since large errors are particularly con-520

cerning for grid integration of solar power (e.g., a loss of load becomes more likely), RMSE is more suitable when521

a set of forecasts contain several large errors, which is usually the case for solar forecasts. From that standpoint, the522

percentage improvement in RMSE, in the form of s, might attract more interests than the MAE skill score.523

The second reason for using the RMSE skill score is related to the distribution-oriented forecast verification.524

The Murphy–Winkler MSE factorization has been recommended for forecast analysis in the previous section. As525

a result, RMSE values become readily available after the various aspects of forecast quality are quantified. It must526

be highlighted that in the field of meteorology, and many other fields such as statistics, researchers generally do not527

distinguish “RMSE” and “MSE” in their writing (Jolliffe and Stephenson, 2012), simply because RMSE and MSE528

differ only by a square root. Nonetheless, they should not be mixed up during skill score computations, as evidenced529

by the example given in Section 2.2.3.530

Lastly, the popularity of RMSE is higher than that of MAE, not only in solar forecasting, but in other forecasting531

domains as well. Gneiting (2011) found that the usage of RMSE in four related domains, namely, forecasting, statis-532

tics, econometrics, and meteorology, dominates as compared to MAE. Whereas the precise reasons are unknown, it533

is hypothesized that consistency might be one of the main reasons, since there are more models minimizing MSE534

than minimizing MAE. Additionally, squares are more amenable than absolute values in many mathematical oper-535

ation (Chai and Draxler, 2014). Hence, for this and the above reasons, the RMSE skill score is recommended in536

deterministic solar forecasting.537

4.2. Climatology, persistence, or their convex combination?538

There are different definitions of what constitutes a climatology method. Murphy (1988) considered single-valued
internal climatology, multiple-valued internal climatology, single-valued external climatology, and multiple-valued
external climatology—each resulting in a different skill score expression. Whereas “single-valued” refers to methods

17One should distinguish relative measure from measure of relative error. The former performs division after the primary measure is computed,
i.e., E[S ( f , x)]/E[S (r, x)], whereas the latter performs averaging on relative errors, i.e., E[S ( f , x)/S (r, x)], where S is a scoring function.

18For a regression model, y = g(x)+e, where y is the response, x is the regressor, and bias e is in fact E[y−g(x)], or observation minus prediction.
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that issue a single forecast for all occasions, “multiple-valued” methods issue different forecasts based on some con-
ditional variables (e.g., one value for each season). The definitions of “internal” and “external” are based on whether
the reference forecasts are derived directly from the n samples being verified, or derived from historical samples that
are not included in the n samples. For instance, given an experimental period of one year, the sample mean, E(x), of
all daytime observations in that year, is called the internal single-valued climatology forecast. Under this definition,
the MSE of single-valued internal climatology is simply the sample variance, i.e.,

MSEc =E [E(x) − x]2 = V(x). (15)

It might be however argued that the multiple-valued climatology would be more appropriate when the forecasts539

of interest are to be evaluated over a time period longer than a month or a season (Murphy, 1988). For instance,540

such a climatology forecast is typically constructed for each month or each season. In the most extreme cases, the541

forecasts issued by multiple-valued climatology could be constructed in a rolling manner, with the averaging window542

equal to the forecast horizon. For example, in a day-ahead scenario of hourly GHI forecasts, one would use the543

averaged observed clear-sky index from the last available day as the “climatological” forecasts for each hour of the544

next day. This day-ahead reference method has been used by Beyer et al. (2009); Perez et al. (2013) among others,545

and has been experimentally validated by Yang (2019c). However, due to the many choices in constructing multiple-546

valued climatology forecasts, recommending the multiple-valued climatology defeats the purpose of standardizing547

the reference method used in solar forecasting. For this reason, the multiple-valued climatology will not be discussed548

further in this article.549

On the other hand, Murphy (1992) defined the persistence forecast as a forecast based solely on the value of the
variable of interest at an initial time. Given a forecast horizon, h, the MSE of h-step-ahead persistence can be written
as:

MSEp = E (xi−h − xi)2 = 2(1 − γh)V(x), (16)

where γh is the lag-h autocorrelation function. By comparing MSEp to MSEc, it is obvious that the relative perfor-550

mance of single-valued internal climatology and h-step-ahead persistence depends on γh. When γh < 0.5, MSEc <551

MSEp. When γh > 0.5, MSEc > MSEp. The two MSEs are equal if and only if γh = 0.5.552

To ensure that the value of γh, which depends on the association among observations at lag h, does not affect a
forecaster’s choice of reference method, one can consider a convex combination of the two. The combined forecast is
αxi−h + (1−α)E(x). The optimal value of α can be obtained by differentiating the MSE of the climatology–persistence
combination method, and equating it to zero, i.e., dMSEcp/dα = 0. It is straightforward to see that the optimal α
is simply γh, i.e., α = γh. The MSE of the optimal convex combination of single-valued internal climatology and
h-step-ahead persistence is thus:

MSEcp = E
[
γhxi−h + (1 − γh)E(x) − xi

]2

= E {γh[xi−h − E(x)] − [xi − E(x)]}2

= γ2
hV(x) + V(x) − 2γhcov(xi−h, xi)

=
(
1 − γ2

h

)
V(x), (17)

where cov denotes the covariance. By comparing the expression of MSEcp to MSEc and MSEp, it is apparent that
MSEcp =

(
1 − γ2

h

)
MSEc and MSEcp =

[
(1 + γh)/2

]
MSEp. Since −1 ≤ γh ≤ 1, one obtains MSEcp ≤ MSEc

and MSEcp ≤ MSEp, with equality only when γh = 0 and γh = 1, respectively. Consequently, the RMSE of the
climatology–persistence combination is always smaller or equal to that of either reference method, that is,

RMSEcp ≤ min
(
RMSEc,RMSEp

)
. (18)

This condition is a powerful support for choosing the climatology–persistence combination as the standard of refer-553

ence method in deterministic solar forecasting. This choice has been discussed by Yang (2019b,c), with extensive554

empirical validation, for intra-hour, intra-day, and day-ahead scenarios.555
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4.3. Choice of the clear-sky model556

Although it should be obvious at this point, it is re-emphasized that the naïve reference methods in solar forecasting557

always operate on clear-sky index. A clear-sky radiation model is thus needed to convert all-sky irradiance to clear-558

sky index and back. When developing forecasts using an NWP model, chances are the model can output the ideal559

clear-sky irradiance at regular time steps. When these direct outputs are not available, one of the many clear-sky560

radiation models that are available must be selected and run separately. Several extensive reviews on those models561

that are typically used in solar applications have been published recently (e.g., Sun et al., 2019; Antonanzas-Torres562

et al., 2019; Ruiz-Arias and Gueymard, 2018b). The best such models are simpler, but also faster, than those used in563

NWP models, while providing surface irradiance estimates of similar accuracy.564

One particular issue is that most of the high-performance clear-sky models require several inputs, such as total565

column ozone amount, precipitable water, aerosol optical depth, or aerosol single-scattering albedo. Most generally,566

these quantities are not observed locally and must be sourced from remote-sensing or reanalysis databases. The567

process of obtaining such data at the proper temporal resolution from the highest-quality sources is not easy and568

may appear intimidating to non-experts. On the other hand, very simple radiation models that require only a few569

undemanding input variables usually have too limited performance for serious work (Gueymard, 2012). Therefore,570

the McClear model (Gschwind et al., 2019; Lefèvre et al., 2013) might be the best choice for solar forecasters, at least571

if they do not need to delve into the distant past (since the model delivers data only after 2004-01-01). Being a physical572

model based on radiative transfer, the performance of McClear is among the best (Sun et al., 2019; Ruiz-Arias and573

Gueymard, 2018a). McClear is conveniently available as a web service19 that delivers its predictions at five different574

time scales (1 min, 15 min, hourly, daily, and monthly) for all locations in the world, and for 2004-01-01 up to two575

days ago.20 The R package “camsRad” is also freely available, and offers access to McClear through an API. The only576

limitation of McClear comes from its spatio-temporal resolution constraints, imposed by the reanalysis data it uses as577

its main inputs: 0.5◦ in both latitude and longitude on a 3-hourly basis. Hence, over complex terrain (e.g., mountains)578

or during fast-changing atmospheric conditions (e.g., dust storms), the McClear predictions might significantly differ579

from the actual situation at any specific site within its defining 0.5◦ × 0.5◦pixel. In such cases, the forecaster would580

have the burden of appropriately correcting the clear-sky predictions.581

4.4. Some seemingly trivial implementation issues582

Forecast verification must be based on appropriate out-of-sample tests (see Tashman, 2000, for a review on var-583

ious test designs). There are several seemingly trivial implementation issues such as data trimming, normalization,584

counting nighttime hours, and data aggregation, that can strongly affect the verification results.585

Data trimming refers to quality control (QC) applied to experimental data prior to forecasting and verification.586

Owing to factors such as measurement uncertainty or irradiance modeling error, experimental data often contain587

spurious values. There is no universally-accepted QC procedure (Gueymard and Ruiz-Arias, 2016), but recommended588

QC methods for surface radiation measurements (Long and Shi, 2008; García et al., 2014) and PV power output589

(Killinger et al., 2017) do exist. Recently, owing to the advances in remote-sensing technology, satellite-derived590

irradiance products have been shown to help perform QC on irradiance measurements (Urraca et al., 2017; Perez591

et al., 2017).592

As statistical and machine-learning software packages become more powerful, details of implementation are now593

more opaque to forecasters. Therefore, forecasters should check the output of each step during forecasting, respon-594

sibly, to prevent spurious data from entering the final verification stage. To ensure forecast verification is performed595

with reasonably trimmed data, visual inspection as outlined in the previous section is necessary. It is however noted596

that data trimming based on forecast error is not recommended. One should not remove a forecast–observation pair597

just because it produces a large error; instead, the cause behind it should be investigated.598

In parallel, there is also no well-accepted answer to the question “whether the nighttime hours should be included599

during validation.” Inclusion of nighttime hours would make the overall error smaller, since the forecasts—0 W/m2—600

are perfect during those hours. Hence, nighttime data should always be excluded from verification. This could601

19http://www.soda-pro.com/web-services/radiation/cams-mcclear
20This two-day lag makes it unsuitable for operational forecast verification. Nonetheless, during forecast verification, one is only interested in

analyzing the long-term behavior of different models, so that this lag may not be of concern.
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be ensured by using a zenith angle filter of < 85◦–—a provision that also removes low-sun situations during which602

measurements are less accurate and irradiance is too low to be of significance in solar power applications. Nonetheless,603

special care is needed when using the filtered data. For instance, the sample average used in single-valued internal604

climatology should be based on the filtered data, whereas the lag-h autocorrelation should be computed based on the605

unfiltered data, to preserve the temporal spacing of the original clear-sky index time series.606

In state-of-the-art solar forecasting, it is common to have more than one data source involved (e.g., ground mea-607

surements, satellite-derived irradiance, reanalysis data, NWP output, or PV output). Even in the case of verifying608

NWP forecasts only, one often desires to compare them to ground-based measurements. The issue of data aggregation609

naturally comes into play because the ground-based measurements are usually at a higher temporal resolution (e.g., 1610

min) than the NWP output (e.g., hourly). A related issue is caused by occurrences of data gaps in the data stream. This611

is a relatively frequent issue, caused by either instrument malfunction or detection of incorrect or suspicious data by612

the QC procedure. Data gaps create a difficulty when attempting to obtain hourly or daily averages. Some gap-filling613

or statistical methods do exist, however, to limit the resulting uncertainty in the temporal means.614

There are three schemes of averaging to aggregate a high-temporal-resolution time series into a low-temporal-615

resolution one, namely, floor, ceiling, and round. A floor aggregation means that the data within a time interval are616

aggregated to the earliest timestamp in that interval, e.g., 1-min data points between 1:00 to 2:00 are aggregated and617

stamped as 1:00. Similarly, the ceiling-aggregation scheme stamps the aggregated data with the last timestamp of an618

interval, and the round-aggregation scheme collapses the data to the center timestamp of an interval. Experimental619

irradiance data may follow any one of these conventions (Polo et al., 2019), which complicates matters. It is obvious620

that inappropriate data aggregation creates temporal misalignment between different datasets. This in turn may artifi-621

cially amplify forecast errors (see Fig. 1 in Yang, 2018). To select the correct data-aggregation scheme, it is necessary622

to understand how each dataset is produced. In other words, one must always read the data documentation. For623

instance, most radiometric networks use the ceiling convention, with the notable exception of the Baseline Surface624

Radiation Network (BSRN), which uses the floor convention. Satellite-derived irradiance and some NWP outputs625

have a “snapshot” nature, and the round-aggregation scheme is appropriate. In the case of reanalysis, the data often626

represent the condition over the past hour, and the ceiling-aggregation schemes is appropriate.627

4.5. Irradiance to PV power output conversion issues628

As discussed at the beginning, solar forecasting refers to both solar irradiance forecasting and solar power output629

forecasting. Given the fact that most modern solar forecasting methods leverage heavily on exogenous input, such630

as camera, satellite, or NWP data, time series methods are less frequently published (Yang, 2019a). In this regard,631

most researchers would take a two-step procedure to forecast solar power output: (1) forecast solar irradiance, and (2)632

convert the irradiance forecasts to power forecasts. For a fair comparison of forecasts, specific plant attributes need to633

be considered.634

In the case of PV power plants, the panels are usually installed on a surface tilted at an angle close to the site’s635

latitude, or with single- or double-axis trackers, to maximize the annual electricity production. Consequently, the636

variability of solar irradiance on the plane of array (POA) is often higher than that on a horizontal surface, due to637

the larger swing of irradiance. On the other hand, the physical size of the PV power plant should also be considered,638

because a PV plant behaves as a low-pass filter whose cut-off frequency depends on its size. In addition to this, due639

to the well-known geographical smoothing effect (Lave et al., 2012), the total output of a utility-scale PV power plant640

or a cluster of PV plants has less variability. Generally, areal forecasts are more accurate than the forecasts made for641

a point location (Yang et al., 2017). The reader is referred to Lohmann (2018) for a short review on spatio-temporal642

variability of solar irradiance, and Perpiñán et al. (2013); Marcos et al. (2012) for analyses on power fluctuations in a643

large PV plant and a cluster of PV plants, respectively.644

To covert the irradiance to PV power, three classes of models are often used, namely, separation models (Gueymard645

and Ruiz-Arias, 2016), transposition models (Yang, 2016), and irradiance-to-power conversion models (see Fig. 1 in646

Li et al., 2017). Separation models seek to estimate the DNI and DHI components from GHI; they are only needed if647

both DNI and DHI are unavailable. In the recent work by Yang and Boland (2019), several state-of-the-art separation648

models were compared, and the Yang2 model was shown to be one of the most accurate separation models. This649

result was later confirmed by Blaga (2019). On the other hand, transposition models convert horizontal irradiance650

components to the POA irradiances, and the Perez1990 model (Perez et al., 1990) is commonly regarded as one of the651

best-performing transposition models (Yang, 2016). Lastly, based on the POA irradiance and other parameters such652
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as ambient or module temperature, the power output from a PV plant with known attributes can be predicted fairly653

accurately.654

Although these modeling steps usually have a much higher accuracy than forecasting, their uncertainties have to655

be considered during forecast verification. Generally, due to cancellation of errors, the overall error of PV power656

forecasting is almost always smaller than the algebraic sum of errors in each step (forecasting, separation, transposi-657

tion, and irradiance-to-power conversion). It is therefore of interest to study such error propagation, see Urraca et al.658

(2018); Almeida et al. (2017) for some preliminary findings. With the verification framework discussed earlier, the659

Murphy–Winkler factorizations could be applied to each of the steps, and thus provide new insights to solar engineers.660

Lastly, it is worth noting that the baseline method for irradiance-to-power conversion is widely available in soft-661

ware packages, such as the System Advisor Model, PVSyst, or pvlib. These software packages take irradiance time662

series (e.g., typical meteorological year data) as input, and output PV power time series using the system specifications663

provided by users. For forecast verification purposes, one can feed the forecast irradiance time series, and obtain the664

corresponding forecast power time series. That said, emerging issues, such as lack of spectral and angular details in665

irradiance input (Lindsay et al., 2020) or the effect of cloud-enhancement phenomenon on PV power plants (Järvelä666

et al., 2020), are not yet being considered in these software packages, leaving room for improvements.667

5. Conclusion668

The increasing amount of solar forecasting research calls for harmonization of forecast verification measures669

and methods among researchers. This paper has discussed a wide spectrum of issues relevant to verification of670

deterministic solar forecasts. The final recommendations are listed as follows.671

• The distribution-oriented approach to forecast verification can be used for forecast analysis. Since the joint672

distribution contains all time-independent information relevant to verification, it is more general than the tradi-673

tional measure-oriented approach. It is recommended to use the distribution-oriented approach to visualize and674

quantify forecast quality.675

• Bias–variance factorization and Murphy–Winkler factorizations link various qualitative aspects of the skillful-676

ness of the forecasts (such as uncertainty, reliability, resolution, association, or discrimination) to quantitative677

measures. These decomposed measures provide forecasters with realistic and insightful assessments of the678

forecast verification problem, which essentially has a multifaceted nature.679

• Small MBE is a prerequisite of all solar forecasts and therefore not a critical metric to judge forecast quality.680

• When the normalized errors are reported, it is necessary to also tabulate the normalization values, such as the681

mean irradiance values.682

• Generally, forecasters are encouraged to use any meaningful measure to gauge their forecasts. However, if a683

chosen measure is inconsistent with the given forecast directive, it might be inappropriate in theory.684

• The RMSE skill score based on the optimal convex combination of single-valued internal climatology and685

h-step-ahead clear-sky persistence is strongly recommended in all solar forecasting studies. The skill score686

denotes the relative improvement of a model of interest from the reference method, and it can be used to687

compare forecasts produced in different works. Nonetheless, the skill score only provides an overall idea, so688

that the distribution-oriented approach is still required.689

• Implementation issues are important for the final interpretation of forecast accuracy. Nighttime data should be690

excluded from forecast verification. Special care is needed during data trimming and aggregation, as a result of691

the necessary quality control and data gap-filling processes.692

• As forecasting workflows are getting more and more complex, it is advised to perform sanity checks throughout693

the course of producing forecasts. To ensure the worldwide uptake of any proposed forecasting model, source694

code and data should be made available whenever possible. Without reproducibility, it would be cumbersome—695

if not impossible—to verify the reported forecast performance.696
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Appendix A. On seasonal adjustment of reference forecasts701

In the simplest case, persistence, by definition, uses the most recent observation available as forecasts for all702

horizons. Such forecast is also sometimes referred to as “random walk” (i.e., rt = rt−1 + et), or “no change” forecast.703

In the case of solar irradiance forecasting, raw persistence forecasts should be the most recent observed irradiance.704

Notwithstanding, given the bell-shaped diurnal transient of irradiance caused by the Sun’s apparent movement, it705

is important to take such seasonality into consideration. Makridakis et al. (2008) noted that seasonally adjusted706

persistence can frequently do much better than the raw persistence. So the question is “how is it best to adjust for707

seasonality?”708

Besides using the clear-sky irradiance, one can use the extraterrestrial irradiance (the irradiance at the top of the709

atmosphere) for adjustment. The ratio between surface and extraterrestrial GHI is known as clearness index, k. In710

other words, the persistence is performed on clearness index, namely, rt+h = xt ·kt+h/kt. Both clear-sky persistence and711

clearness persistence adopt a multiplicative seasonality modeling approach. A particular problem with multiplicative712

seasonality is that during sunrise and sunset (small solar elevation angle), both the clear-sky index and clearness index713

can become quite large, owing to the measurement uncertainty and the inaccuracy in the clear-sky models, and thus714

the forecast errors can be large at those times. To exclude those undesirable forecasts that may severely distort the715

error metrics, solar forecasters usually apply a zenith angle filter, e.g., zenith angle < 85◦, before error computation.716

Alternatively, one can opt for an additive seasonality modeling, e.g., rt+h = xt − ct + ct+h. However, the remainder717

series (i.e., xt − ct) in this case is still heteroscedastic.718

Alternatively, one can also use a “cloudiness index” where the reference forecast is referred to as “smart persis-719

tence” by Inman et al. (2015). This reference model includes the effects of air mass, aerosols, turbidity, i.e., every720

major atmospheric effect except that of clouds. Because the timescale for turbidity variations is much larger than the721

timescale for cloud-cover variations, the cloudiness index provides an excellent reference for short-time forecasts.722

Any skill calculated over the cloudiness-index persistence measures the ability to capture cloud cover changes over723

short periods of time, and thus the qualifier “smart”. Note that skills reported over smart persistence are necessarily724

lower than skills reported over clear-sky persistence. This is because it is virtually impossible for a forecast to im-725

prove over smart persistence under cloudless skies, since the smart persistence reference model includes all effects of726

diurnal variability (solar zenith angle) and columnar optical depths of water vapor and aerosols. These types of smart727

persistence reference forecasts are typically updated sub-hourly (Inman et al., 2015; Reno and Hansen, 2016).728

The literature on the treatment of seasonal and multi-seasonal (e.g., diurnal and yearly cycles in solar irradi-729

ance) time series is rich. Chapter 3 of Makridakis et al. (2008) provides details on various statistical techniques for730

time series decomposition. In the solar forecasting literature, various techniques, such as Fourier series, exponential731

smoothing, STL decomposition, additive clear-sky decomposition, or smoothed clear-sky decomposition, have also732

been extensively explored (e.g., Dong et al., 2013; Yang et al., 2015; Voyant and Notton, 2018). However, as compared733

to the clear-sky persistence, these methods usually require more steps, which may be a reason for their limited uptake.734

Since the main goal of seasonally-adjusted persistence is to construct a better reference model than raw persistence,735

clear-sky persistence offers a good trade-off between implementation difficulty and baseline accuracy.736

Appendix B. On equivalence of s∗ and s737

Denoting the clear-sky index forecasts of interest, reference forecasts, and observations using φ, ρ, and κ, respec-
tively, one can write: φt ≡ ft/ct, ρt ≡ rt/ct, and κt ≡ xt/ct. For 1-step-ahead clear-sky persistence, rt = xt−1 · ct/ct−1,
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hence, ρt = xt−1/ct−1. Eqs. (8) and (9) can then be written as:

U =

√√√
1
N

N∑
t=1

(φt − κt)2 = RMSE(φ, κ), (B.1)

V =

√√√
1
N

N∑
t=1

(ρt − κt)2 = RMSE(ρ, κ). (B.2)

Therefore, s∗ = 1 − RMSE(φ, κ)/RMSE(ρ, κ) is the RMSE skill score of clear-sky index forecasts, with 1-step-ahead738

persistence reference.739

Suppose a perfect clear-sky model exists, which explains all influences of atmospheric laws but those from clouds,
then one can say that the clear-sky index is independent of the clear-sky expectation, i.e., κ ⊥⊥ c. Hence, any forecast
error, e = φ − κ = g(κ) − κ, where g is a function to produce κ forecast, is also independent of c, i.e,. e ⊥⊥ c. From the
properties of independence, it immediately follows that:

E
(
e2c2

)
= E

(
c2

)
E

(
e2

)
. (B.3)

That is:

MSE( f , x) = E
(
c2

)
MSE(φ, κ). (B.4)

Stated differently, if κ ⊥⊥ c, the MSE of clear-sky index forecasts and that of irradiance forecasts are scaled by a factor
of E

(
c2

)
. Equivalently,

RMSE( f , x) =

√
E

(
c2) · RMSE(φ, κ). (B.5)

Since g is any function, the result also applies to reference κ forecast. Then,

s∗ = 1 −
RMSE(φ, κ)
RMSE(ρ, κ)

= 1 −

√
E

(
c2) · RMSE(φ, κ)√

E
(
c2) · RMSE(ρ, κ)

= 1 −
RMSE( f , x)
RMSE(r, x)

= s. (B.6)

That said, it should be clearly noted that the assumption κ ⊥⊥ c is not valid in almost all cases. This is because740

even the best clear-sky models could not completely explain the atmospheric effects on radiation. Hence, when there741

is some degree of dependence between κ and c, one can only observe s∗ ≈ s, as empirically shown by Marquez and742

Coimbra (2011, 2013); Coimbra et al. (2013). This issue deserves future attention.743

Appendix C. Links between measure-oriented and distribution-oriented forecast verification approaches744

The rule of the lazy statistician states (Wasserman, 2013): Let y = g(x), then

E(y) =E[g(x)] =

∫
g(x)dF(x) =

∫
g(x)p(x)dx. (C.1)

The two-variable case is handled in a similar way: Let z = g(x, y), then

E(z) =E[g(x, y)] =

∫
g(x, y)dF(x, y) =

∫∫
g(x, y)p(x, y)dxdy. (C.2)
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This rule links the joint distribution to a large collection of error metrics. For example, MBE, MAE, and RMSE can
be written as:

MBE =E[( f − x)] =

∫∫
( f − x)p( f , x)d f dx, (C.3)

MAE =E(| f − x|) =

∫∫
| f − x|p( f , x)d f dx, (C.4)

RMSE =

√
E[( f − x)2] =

[∫∫
( f − x)2 p( f , x)d f dx

] 1
2

. (C.5)

Similarly, it is possible to express nMBE, nMAE, nRMSE, maximum absolute error, mean average percentage error,745

etc., in this form. Hence, it is clear that all these metrics are just different ways to summarize the joint distribution.746

In the report by Beyer et al. (2009), four metrics based on the Kolmogrov–Smirnov test were proposed, namely,747

the Kolmogrov–Smirnov test integral (KSI), the OVER index, KSE (linear combination of KSI and OVER), and RIO748

(sum of KSD and RMSE, divided by 2). For instance, KSI calculates approximately the area between the ECDFs of f749

and x, whereas OVER calculates the area of those instances between the two ECDFs that exceed the critical value at750

99% level of confidence. While the definitions of these metrics might deviate from the usual statistical measures (such751

as the Wasserstein distance), they actually constitute an early attempt by solar engineers to summarize the differences752

between marginal distributions of f and x.753

Lastly, Section 3 demonstrates several ways to summarize the conditional distributions. In these cases, the sum-754

maries would also require marginal distributions. More specifically, the type 1 conditional bias and resolution are755

summaries of p(x|f) and p(f), whereas the type 2 conditional bias and discrimination are summaries of p(f|x) and p(x)756

(Murphy, 1997).757

The remaining open questions, such as “are there better ways to summarize these distributions,” “which summaries758

allow cross-work forecast comparison,” “how to analyze the summaries graphically,” etc., jointly motivate future759

research on verification of deterministic solar forecasts.760

Appendix D. Supplementary materials761

Supplementary data associated with this article can be found, in the online version, at doi place holder762
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